

C - 503 : Physical Chemistry & Analytical Chemistry					
Faculty Code : 003 Subject Code : 001507					
Time : $2\frac{1}{2}$ Hours]					[Total Marks : 70
Instructions: (1) Answer the MCQ in the Answer Book. (2) Digits on right hand side indicate marks.					
1	Mult	tiple	Choice Questions.		20
	(1)	Nati	ural Processes are _		
		(A)	spontaneous	(C)	reversible
		(B)	isothermal	(D)	adiabatic
	(2) If the temperature of the sink is 0° K, the efficiency of heat engine is				
		(A)	less than one	(B)	one
		(C)	greater than one	(D)	zero
(3) For reversible cyclic process, ΔS is				ΔS is	
		(A)	less than one	(C)	zero
		(B)	greater than one	(D)	infinite
	(4) If the values of ΔH is positive and ΔS is negative, the value of ΔG is				
		(A)	negative	(C)	infinite
		(B)	zero	(D)	positive
DCC	-003-	-0015	607]	1	[Contd

(5)	Variation of work function with temperature at constant volume is				
	(A)	V	(C)	P	
	(B)	+ S	(D)	-S	
(6)		n ideal gas expands cess, ΔG	s by	reversible and isothermal	
	(A)	zero	(C)	decreases	
	(B)	increases	(D)	infinite	
(7)	Cubic crystal system has Bravice lattices.				
	(A)	zero	(C)	two	
	(B)	three	(D)	none of these	
(8)	radiation is used to determine the structure of crystal.				
	(A)	x-rays	(C)	IR	
	(B)	UV	(D)	Visible	
(9)	Gen	erally, tie lines are		to each other.	
	(A)	Parallel	(C)	not parallel	
	(B)	perpendicular	(D)	none of these	
(10)	In case of phase diagram of three components partially miscible liquid system, any line parallel to side AB has constant concentration of component.				
	(A)	A	(C)	C	
	(B)	В	(D)	both (A) and (B)	

(11)	denotes the agreement among the given set of measurements.				
	(A)	Precision	(C)	Error	
		Accuracy	, ,	both (A) and (B)	
(12)		tision can be expres			
(1-)		range		standard deviation	
(10)		average deviation			1
(13)	(13) If true value of the measurement is 10.0 ml and measured value is 10.3 ml the relative error of measurement is				
	(A)	0.03	(C)	- 0.3	
	(B)	- 0.03	(D)	0.03	
(14) can be used for separation of Cl^{-1} , Br^{-1} I^{-1} ions.				and	
	(A)	Copper sulphate			
		Potassium persulph	nate		
		Potassium sulphite			
	, ,	both (A) and (B)			
(15)	` '	is used for re	mova	$1 \text{ of } NO_2^{-1} \text{ ions.}$	
, ,				NH_4NO_3	
		- -		None of these	
(16) Logarithm of inverse of trans					
(10)		specific absorbance			—·
	, ,	_			
DOC 000	` '	molar absorbance		ausorvance	F.C 1
DCC-003	-0015	007]	3		[Contd

	(17)	If transmittance of a solution is 20%, its absorbance is					
		(A)	-1.3010	(C)	0.3010		
		(B)	0.6990	(D)	- 0.6990		
	(18)	Iodine solution is titrated against standard solution of					
		(A)	$ m Na_2S_2O_3$	(C)	$\mathrm{Na_2SO_4}$		
		(B)	$\mathrm{Na_2S_2O_8}$	(D)	All of these		
	(19)	Whi	Which of the following is acid-base indicator?				
		(A)	phenolphthalene	(C)	methyl red		
		(B)	methyl orange	(D)	all of these		
	(20)	If 2 lit of solution cantains 100 gm NaOH, the molarity of the solution is (molecular wt. of NaOH is 40 gm/lit)					
		(A)	1.25M	(C)	0.25M		
		(B)	2.5M	(D)	$12.5\mathrm{M}$		
2	(A)	Ans	wer any three que	estion	s. 6		
		(1)	(1) Write two statements of Second Law of Thermodynamics.				
		(2) State the limitations of First Law of Thermodynamics.					
		(3)	nce is converted into liquid calculate ΔS (latent heat				
DCC	C-003-	-001	of solid is 0.73 ca 507]	4	[Contd		

- (4) Prove that decrease in free energy is net work or useful work.
- (5) Prove that dG = VdP SdT
- (6) Draw the hexagonal unit cell.
- (B) Answer any three questions.

9

- (1) Explain: Entropy is regarded as more probable state.
- (2) Write the equation of Δ Smix of gases and prove that it is always positive.
- (3) Derive the law of active mass by chemical potential.
- (4) If the equilibrium constant of a reaction at 127°C is 5×10² and at 27°C its value is 2.5×10². Calculate enthalpy change of the reaction.
 (R =1.987 cal degree-1 mole-1)
- (5) Explain the inter planner distance of simple cubic system.
- (6) Prove that for three component partially miscible liquid system maximum number of phase is 5 and maximum degree of freedom is 4.
- (C) Answer any two questions.

10

- (1) Derive the equations for entropy change of ideal gas.
- (2) Derive the equation which relates effect of temperature on equilibrium constant of chemical reaction.

- (3) Derive Clausius Clapeyron equation.
- (4) Discuss various type of liquid crystals.
- (5) Describe phase diagram of one pair of partially miscible three component liquid system.
- 3 (A) Answer any Three out of Six questions. 6
 - (1) Determine median of the burette readings
 12.7 ml, 12.1 ml, 12.6 ml, 12.1 ml, 12.5 ml and 12.3 ml.
 - (2) Explain standard deviation.
 - (3) Explain the separation of S^{-2} ions from the mixture of S^{-2} , SO_3^{-2} and SO_4^{-2} ions.
 - (4) Derive Lambert's law.
 - (5) Explain with chemical equation the function of KI in the preparation of iodine solution.
 - (6) Draw the graph of pH of H₃PO₄solution against the added volume of base.
 - (B) Answer any three out of Six questions,
 - (1) Discuss Normal Distribution Curve.
 - (2) State only classification of the error.
 - (3) Describe the separation of Cu^{+2} and Cd^{+2} ions from the inorganic mixture.
 - (4) Explain deviation of Beer's law.
 - (5) State the characteristic of the substance which is used to prepare primary standard solution.
 - (6) Describe Volhard method of precipitation titration.

9

(C) Answer any two out of Five questions.

10

- (1) Describe the methods to eliminate the errors.
- (2) Discuss the separation of CO_3^{-2} , SO_3^{-2} and S^{-2} ions.
- (3) Describe spectrophotometric titrations.
- (4) Describe various types of redox indicator.
- (5) Explain the principle of acidic type of indicator of acid-base titration.

DCC-003-001507]